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Two-dimensional waves are incident upon a pair of vertical flat plates inter- 
secting the free surface in a fluid of infinite depth. An asymptotic theory is de- 
veloped for the resulting wave reflexion and transmission, assuming that the 
separation between the plates is small. The fluid motion between the plates is 
a uniform vertical oscillation, matched to the outer wave field by a local flow 
a t  the opening beneath the plates. It is shown that the reflexion and transmission 
coefficients undergo rapid changes, ranging from complete reflexion to complete 
transmission, in the vicinity of a critical wavenumber where the fluid column 
between the obstacles is resonant. 

1. Introduction 
When two long cylindrical obstacles are placed in parallel on the free surface, 

in the presence of normally incident plane progressive waves, interference 
effects will persist between the two obstacles even when their spacing is large 
compared with the wavelength. Thus, in general, there will exist an infinite set 
of wavelengths A, or wavenumbers K = 27rr/A, for which the obstacle pair is 
‘transparent ’, i.e. there is complete transmission and no reflexion of the incident 
wave system. 

The possibility of complete reflexion is less obvious and, intuitively, this 
might be regarded as unlikely or impossible. However, Evans & Morris (1972) 
have demonstrated the occurrence of complete reflexion for a pair of vertical 
barriers, which extend down from the free surface to a depth a, separated by a 
distance 2b. With the usual assumptions of linearized two-dimensional motion 
in a fluid of infinite depth, this problem has an exact but complicated solution, 
due to Levine & Rodemich (1958). Evans & Morris (1972) derive an approximate 
but more descriptive solution, based on complementary variational approxima- 
tions, and prove the existence of complete reflexion and transmission for two 
infinite sets of critical waveiiumbers. Bounds are obtained on the critical wave- 
numbers for the interesting case of complete reflexion, but the variational pro- 
cedure of Evans & Morris gives close bounds only for large barrier spacing. I n  
this case the occurrence of complete reflexion is effectively masked by the fact 
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that the critical wavenumbers are large, and hence the transmission coefficient is 
exponentially small in Ka. Evans & Morris (1972) note that the lowest critical 
wavenumber is reduced for smaller values of the barrier spacing ratio b/a, but 
that in this case the variational approximationis “poor”, and “it  is onlypossible 
to obtain bounds for the smallest root. . . Thus it is found that (for b/a = 0.1) 
0-89 < Ka < 0.99 and (for b/a = 0.05) 0.87 < Ka < 1.03. ” 

In  spite of the ‘poor’ approximation obtained by Evans & Morris (1972) for 
small values of b/a, the proximity of the critical values of Ka to 1.0 should be 
noted. If the spacing ratio b/a is sufficiently small, the water column between the 
barriers will oscillate in a simple vertical mode, in the same manner as a floating 
rigidbody of width 2b and deptha. Forsuch a bodythehydrodynamicadded-mass 
and damping forces will be negligible if the ‘slenderness ’ ratio b/a is sufficiently 
small. A simple calculation equating the inertial force, due to  vertical accelera- 
tion of the displaced fluid mass, to the hydrostatic buoyancy force (or, equiva- 
lently, the kinetic and potential energies) then shows that resonance will occur 
at a frequency 2nw such that w2a = g, where g is the acceleration due to gravity 
(cf. Newman 1963). For deep-water incident waves, where K = w2/g,  the equiva- 
lent condition is Ka = 1, and in the vicinity of this resonance the fluid column 
may influence the exterior wave field out of proportion to the small mass of 
fluid between the obstacles. 

Here we shall analyse the same problem as Evans & Morris (1  972)’ but using 
a singular-perturbation method based on the assumption that b/a < I.  In  this 
way it will be possible to obtain explicit results for the reflexion and transmission 
coefficients and for the vertical motion of the fluid column between the two ob- 
stacles. Our approach is based on a rather loose application of the method of 
matched asymptotic expansions, following a viewpoint similar to that used by 
Tuck (1971) to analyse wave transmission through a small gap in a single infinite 
vertical barrier. Three separate flow regimes are considered initially, including 
(i) the thin vertical column of fluid between the obstacles, (ii) the local flow near 
the lower edges of the obstacles and (iii) the outer solution comprising the wave 
field exterior to the obstacles. The thin fluid column is in a simple state of uniform 
vertical oscillatory flow, with the free-surface boundary condition imposed in a 
relatively trivial fashion. At the entrance, near the lower edges of the obstacles, 
the local solution is that of a two-dimensional potential flow leaving the opening 
between two semi-infinite flat plates and ejecting into an unbounded outer field 
in an oscillatory source-like manner. Finally, in the outer field, the two obstacles 
are effectively collapsed into a single plane barrier, and the solution is a super- 
position of the well-known single-barrier solution and an oscillatory wave source 
at  the lower edge, this source representing the flow into and out of the entrance 
in the inner region. 

In  $ 2 the boundary-value problem is formulated, and in $ 3  the outer solution 
is developed in terms of the known single-barrier solution of Ursell (1947) and 
others. In  § 4 the vertical column and local flow near the entrance are treated as 
a single composite inner flow and matched with the outer solution. In  $ 5  the 
reflexion and transmission coefficients are computed, and the occurrence of 
both complete reflexion and complete transmission is noted. The response of the 
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I 2 b  - 
FIGURE 1. Co-ordinate system and barrier configuration including 

the transmitted, reflected and incident wave systems. 

fluid column is analysed in 5 6, and a highly tuned resonant peak is shown to occur. 
The results are discussed from a practical standpoint in 4 7. 

2. Formulation of the problem 
Following Evans & Morris (1972), Cartesian co-ordinates (x, y) are employed 

with the origin in the undisturbed free surface and y vertically downwards. Plane 
progressive waves of frequency 4271 are incident from x = + 00 upon two vertical 
barriers which occupy x = & b, 0 < y < a. This configuration is shown in figure 1. 
With the usual assumptions of two-dimensional linearized inviscid flow, the 
fluid velocity is equal to the gradient of a velocity potential Re {q5(x, y) e-iwt}, 
with q 5 ( q  y) governed by the boundary-value problem 

a2+1ax2 + a2q5/ay2 = 0, y > 0, (2.1) 

~ + + a + l a y  = 0, = 0, K = w2/g, ( 2 . 2 )  

aq5/ax = 0, = * b ,  o < < a. (2.3) 

The boundary conditions (2 .2 )  and (2.3) are supplemented by the requirements 
that  q5 --f 0 as y -+ 00 and Vq5 should have, a t  most, a square-root infinity a t  
the sharp edges x = 2 b, y = a. Finally, radiation conditions are imposed in the 
form 

$(x, y) N e-Kg (eciKX + R e i K x ) ,  x --f +a, (2.4) 

and $(x, y) E Te-Kg-iKX, x -+ - co. (2.5) 

Here R and T are the complex reflexion and transmission coefficients, and the 
incident wave potential is assumed to be of unit amplitude. 

A solution is sought under the assumption that b/a = E is a small parameter, 
with K a  = O( 1).  Thus the two barriers are closely spaced, relative to the depth 
a and wavelength h = 2n/K. Using the method of matched asymptotic expan- 
sions and an approach similar to that of Tuck (1971), we consider separately an 
outer region (Kx, K y )  = O( 1) and an inner region xlb = O( 1), 0 < y 7 a. (Strictly 

7-2 



100 J .  N .  Newman 

speaking, the inner region might include only the vicinity ofthe opening between 
the barriers xlb = O( I), (y - a) /b  = O( I), and the remaining column of fluid above 
this between the barriers would be regarded as a second outer region, to be coupled 
to the first by the flow through the inner region. But in view of the relatively 
trivial role of the free surface between the barriers, this formulation is not neces- 
sary here, i t  being simpler to regard the entire fluid column 1x1 < b, y < a 
together with the opening at  y = a as a ‘composite’ inner region.) 

3. The outer solution 
In  the outer region the double barrier is effectively collapsed, as e -+ 0, into 

a single barrier x = 0, 0 < y < a, together with a source-like flow at the opening 
x = 0, y = a which accounts for the mass flux m into the inner region. Thus the 
outer solution will take the form 

(3.1) q5(x, Y)  = #o(x, Y) + mG(x,  Y, a) ,  

where q50(x, y) is the potential for a single vertical barrier (e  = O ) ,  G is the Green’s 
function or source potential and m is the (unknown) source strength. The solu- 
tion q50 for a single barrier is well known, cf. Ursell(l947) or Wehausen & Laitone 
(1960); we shall not require the full solution, but only the reflexion and trans- 
mission coefficients for the single barrier, which are given by 

Ro = nI,(Ka)/[7rIl(Ku) +iK, (Ka)] ,  (3.21 

To = iK,(Ka)/[nI,(Ka) +iK,(Ka)]. (3.3) 

Here I1 and K ,  are the usual modified Bessel functions, of order one. In  addition 
we shall need the inner limit q50(0, a ) ,  which can be found by first noting that 

q5 0 -  - e-KY--iKx+q5d, (3.4) 

where 
From symmetry the potential 
y > a, with a square-root zero a t  the edge y = a. Thus 
for y > a, and the inner limit of 

is the diffraction potential due to the presence of the single barrier. 
is an odd function of x,  continuous on x = 0,  

vanishes on x = 0 
is simply 

q50(0,a) = e-Ka. (3.5) 

The Green’s function G appearing in (3.1) is also well known, cf. Wehausen & 
Laitone (1960),  and can be expressed in the form 

w e-kbfa)  cos kx 
dk - i e-=@+a) cos Kx. (3.6) 

I x2+ (y - a)2 
G(s, y, a)  = -log 47r [x2+(y+a)~]-:So k - K  

Here f denotes the principal-value integral. 

valid for r = [x2 + (y - a)2]* -+ 0, is given by 
It follows, from (3.5) and (3.6), that the inner limit of the outer solution (3.1)) 

$(x, y) = (m/2n)  log (r/2a) + e-hIa+ (m/n) e-2KaEi (2Ka) 

-ime-2Ka+O((r/a)*), r/a < I, (3.7) 
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where Ei is the exponential integral 

Ei(2Ka) = - 
-2Ka u 

The outer solution is now complete, except for the source strength m, which must 
be determined by matching with the inner solution. 

4. The inner solution and matching 
I n  the inner region, between the two obstacles and in the vicinity of their lower 

edges, the fluid motion is simply an oscillatory flow between two semi-infinite 
plates x = b, -a < y < a.  Using the complex potential qb+i$, this flow is 
described by the implicit solution (cf. Lamb 1932, $66) 

x+ i(y -a) = (ib/n) {exp [ -a($ + i$) +PI -a($ +i$) + I +P}.  (4.1) 

Here the streamlines $ = f n/a coincide with the obstacles x = f b, and a and ,8 
are arbitrary real constants. The asymptotic approximation to (4.1) far above 
the lower edges y = a in the inner region is 

x+i(y-a)  N ( ib /n) [ -a (~+i$)+I+P] ,  a$-/39 I. (4.2) 

$ 2: -ny/ba+(I+na/b+P)/a,  (y-a)/b < 1, (4.3) 

Thus the streaming flow in the column is governed by the potential 

and the constant P can be determined by the free-surface boundary condition 
(2.2)as 

/3 = n/Kb-na/b-l. (4.4) 

The remaining constant a must be determined by matching the outer limit 
of the inner solution (4.1) to the inner limit of the outer solution. For this purpose 
we first obtain the outer approximation of (4.1) in the implicit form 

x+i(y-a)  N (ib/n)exp[-a($+i$) +PI (4.5) 

qb N ( -  I /a) log(nr/b)+/3/a+O((b/r) log2(r/b)) ,  r/b $ 1. (4.6) 

m = -27rIa (4.7) 

or, with Ix+i(y-a)l = r ,  

On matching of (3.7) and (4.6) in the overlap region b < r < a, it follows that 

and hence, matching the O(1) terms to eliminate a and using (4.4), the source 
strength m is given by 

m = 2nKbe-Ka(n(Ka- I)+Kblog(2za/b) 

+Kb[l- 2e--2=aEi(2Ka) + 2 ~ i e - ~ ~ ] } - ~ .  (4.8) 

This completes the solution of the problem, the source strength m in the outer 
solution (3.1) and the constants a and /3 in the inner solution (4.1) being deter- 
mined by (4.4), (4.7) and (4.8). 
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bla K a ( R  = 0) Ka (T = 0) 

0 1.0 1 .o 
0.01 0.980 0.989 
0.05 0.929 0.969 
0.1 0.885 0.961 
0.2 0.822 0.963 

TABLE 1. Values of Ka for zero reflexion ( R  = 0) and zero transmission (T = 0) 

5. The reflexion and transmission coefficients 
The reflexion coefficient R and transmission coefficient T in the radiation con- 

ditions (2.4) and (2.5) can be computed from the far-field approximations of the 
outer solution (3.1). The limiting form of the Green's function (3.6) is readily 
found by contour integration as 

G(x,y ,a)  2: -iexp[-K(y+a)+iKlzl], 1x1 +a. (5.1) 

Thus, from (2.4) and (2.5), 

where R, and To are the single-barrier coefficients given by (3.2) and (3.3). 
Using (4.8) to eliminate m gives 

(;) = (;;) -2niKbe-2Ka{n(KU- 1) 

+ Kblog (2nulb) + Kb[l- 2e-2KaEi(2Ku) + 2nie-=a]}-l. (5.3) 

Equation (5.3) in conjunction with (3.2) and (3.3) is the desired relation for 
the reflexion and transmission coefficients. It is not difficult to confirm that 
IRI2 + ITI2 = 1, and hence energy is conserved. In  general R and T differ from 
R, and To by O(Kb), and thus the small gap between the two obstacles exerts a 
correspondingly small influence on the outer flow. However, this influence is 
magnified when Ku 2 1, a situation corresponding to resonant oscillations of the 
fluid column between the obstacles. It is clear from (5.3) that, when 

KU = 1 - (Kb/n) log ( 2 n ~ l b )  + O(Kb), (5.4) 
the effect of the gap is in fact O( 1). Indeed, in these circumstances it is possible 
to have either complete transmission or complete reflexion. The approximate 
relations for these conditions are readily calculated by setting Ku = 1 in (5.3), 
except in the first term in braces, and thus 

The corresponding values of Ku are listed in table 1. It may be noted that the 
critical wavenumbers for T = 0 are consistent with the upper and lower bounds 
(0.87 < Ka < 1.03 for b/u = 0.05, and 0.89 < Ku < 0.99 for b/u = 0.1) given 
by Evans & Morris (1972). 



Interaction of water waves with, two vertical obstacles 103 

1 .0 

0.8 

0.6 

PI 

0.4 

0.2 

I 

/ 
1 
I 

/ 
/ 

I 
I 

I f ,~ 
I 

0 0.5 

Ka 

*- , .-- 
/ 

1 .o 1 -5 

FIGURE 2. Reflexion coefficient of a pair of vertical barriers with spacing ratio b/a = 0.1. 
--- , reflexion coefficient lRol for a single barrier. 
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FIGURE 3. Transmission coefficient of a pair of vertical barriers with spacing ratio 
b/a = 0.1. - - -, transmission coefficient ITo[ for a single barrier. 
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FIGURE 4. Magnification factor of the response between the two vertical 
barriers with spacing ratio bla = 0.1. 

Computations of the magnitude of the reflexion and transmission coefficients, 
based on (5.3), are shown in figures 2 and 3 for the ca,se bla = 0.1. Also shown 
for comparison are the corresponding values of R, and T,, for the single barrier. 
These figures confirm the occurrence of zero reflexion and complete transmission 
a t  Ka A 0.88, and the converse case of zero transmission and complete reflexion 
a t  Ka + 0.96. For long wavelengths or small barrier depths (Ka < 0.92) the 
transmission coefficient is increased relative to the single-barrier values, whereas 
for short wavelengths or deep barriers (Ka > 0.92) the transmission coefficient 
is reduced by the presence of the second barrier. 

6. Response between the obstacles 
I n  view of the assumption that Kb < I ,  the free-surface elevation between the 

two obstacles can be regarded as spatially uniform, and we shall define the 
'magnification factor ' M as the ratio of the magnitude of this elevation to the 
incident wave amplitude. Using (4.3), (4.4) and (4.7) it follows that 

M = I$(O,O)I = Iml/2Kb 

= 7re-K'1n(Ka- I)+Kb[log(Sna/b) + l-2e-2KaEi(2Ka) +2nie-gu]I-1. (6.1) 

For b -+ 0 the response is unbounded at Ka = 1, but for b > 0 radiation damping 
results in a bounded resonance. Nevertheless this resonance is highly tuned, as 
shown by the calculated values displayed in figure 4, for the case b/a = 0.1. 
I n  this case the maximum value M = 13.7 occurs at Ka = 0.894, or nearly coinci- 
dent with the wavenumber for zero reflexion. At the zero-reflexion wavenumber, 
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M = 12-5, whereas, at the zero-transmission wavenumber, M A 4.7. Presumably 
this difference can be explained by noting that  at these wavenumbers the single- 
barrier reflexion is nearly complete (R, + 0.9) and a relatively small perturba- 
tion at the lower edge of the barriers is sufficient to block transmission completely. 
On the other hand, a much larger perturbation is required to cancel the reflected 
wave and effect complete transmission. 

I n  the two limiting cases, M -+ I for Ka + 0 and M -+ 0 for Ka --f 00. Thus, 
for long wavelengths, the response between the obstacles is identical to the inci- 
dent wave amplitude, whereas for very short waves where there is complete re- 
flexion from the first obstacle, the motion between the two obstacles is negligible. 

7. Discussion 
The results shown in figures 2-4 for the reflexion and transmission coefficients 

and the magnification factor of the response between the two obstacles confirm 
the resonant response near K a  = 1 which was ant,icipated in 9 I, and the associ- 
ated variations of the reflexion and transmission coefficients. The occurrence of 
complete reflexion is consistent with the results of Evans & Morris (1972)) but 
the practical significance of this result is offset by the occurrence of complete 
transmission at an adjacent wavenumber. These two critical wavenumbers differ 
by only 10 %, corresponding to a 5 % difference in frequency. Thus it is unlikely 
that the characteristics of complete reflexion or transmission can be exploited 
in practice, in a realistic wave spectrum. 

For larger values of the barrier spacing 2b, the bandwidth of the peaks in 
figures 2-4 may increase, but the approach used here would be invalid, owing to 
the finite separation distance. I n  view of the fact that  Evans & Morris’s (1972) 
analysis based on complementary variational formulations gives useful com- 
putations for b/a > 1, whereas the present approach is limited to values of b/a < 1, 
it would be desirable to perform numerical computations based on the exact 
theory of Levine & Rodemich, in the relatively narrow range bridging the gap 
between these two regimes. This would complete our understanding of the very 
interesting interactions which can occur between two parallel obstacles. 

The above theories are also restricted, of course, by the usual assumptions of 
ideal flow and linearized free-surface effects. Viscous separation may be antici- 
pated near the lower edges of the obstacles, unless these are rounded off, and 
the linearization assumption may be seriously inaccurate near the resonant 
wavenumber, a t  which the response between the barriers is greatly magnified. 
Nevertheless, the present results may be qualitatively indicative of the pro- 
nounced interference which can occur between pairs of long parallel obstacles, 
and of the possibilities of a resonant chamber analogous to a Helmholtz oscillator, 
consisting of a horizontally constrained fluid column on the free surface. 

Experimental and theoretical observations along similar lines have been re- 
ported by Wang & Wahab (1971), for the forced vertical oscillations of two 
floating circular cylinders. At the closest spacing considered by Wang & Wahab 
(1971), the gap width between the cylinders a t  the free surface is equal to the 
cylinder radius a. I n  this case the added-mass force changes from a maximum 
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positive value a t  Ka = 0.6 to a pronounced negative peak at Ka = 0.68, and the 
wave-damping force decreases from a pronounced peak at Ka = 0.65 to a zero 
value at Ka = 0.8. Wang & Wahab (1971) also consider the corresponding reson- 
ant characteristics a t  higher frequencies, corresponding to standing-wave 
modes between the cylinders and to the higher critical wavenumbers in the 
infinite sets of Evans & Morris (1972). Whereas there is no general relationship 
between the forced-oscillation problem of Wang & Wahab (1971) and the dif- 
fraction problem considered by Evans & Morris (1972) and herein, the resonant 
motions observed in both problems are likely to arise for the same reason, and 
thus this analogy is qualitatively valid. 

This work has been carried out during a visit to the School of Mechanical and 
Industrial Engineering, University of New South Wales, with support from the 
Australian-American Education Foundation and the John Simon Guggenheim 
Memorial Foundation. 

Note added in proof. For an analogous three-dimensional problem, an open- 
ended vertical pipe piercing the free surface, Isaacs & Wiegel (1949) note a 
similar resonant response, and find a peak magnification factor of 4.4 based 
on laboratory experiments with a pipe 1 f t  deep and 1 in. in diameter. The 
present theory can be extended to analyse this problem, using the end- 
correction parameter for the pipe mouth computed by Levine & Schwinger 
(1948), and we find a corresponding magnification factor of 1000. From this 
comparison, and from estimates of viscous damping based on Stokes approx- 
imations for the oscillating boundary layer in the interior fluid column, we 
conclude that viscous losses are dominant in the three-dimensional case, but 
that wave radiation damping is dominant in the two-dimensional case if 
bla 9 vig-ga-% where v = kinematic viscosity. 
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